Finding top-k influential users in social networks under the structural diversity model
نویسندگان
چکیده
The influence maximization problem in a large-scale social network is to identify a few influential users such that their influence on the other users in the network is maximized, under a given influence propagation model. One common assumption adopted by two popular influence propagation models is that a user is more likely to be influenced if more his/her friends have already been influenced. This assumption recently however was challenged to be over simplified and inaccurate, as influence propagation process typically is much more complex than that, and the social decision of a user depends more subtly on the network structure, rather than how many his/her influenced friends. Instead, it has been shown that a user is very likely to be influenced by structural diversities of his/her friends. In this paper, we first formulate a novel influence maximization problem under this new structural diversity model. We then propose a constant approximation algorithm for the problem. We finally evaluate the effectiveness of the proposed algorithm by extensive experimental simulations, using different real datasets. Experimental results show that the users identified from a social network by the proposed algorithm have much larger influence than that found by existing algorithms. © 2016 Elsevier Inc. All rights reserved.
منابع مشابه
A Knowledge Management Approach to Discovering Influential Users in Social Media
A key step for success of marketer is to discover influential users who diffuse information and their followers have interest to this information and increase to diffuse information on social media. They can reduce the cost of advertising, increase sales and maximize diffusion of information. A key problem is how to precisely identify the most influential users on social networks. In this pape...
متن کاملfinding influential individual in Social Network graphs using CSCS algorithm and shapley value in game theory
In recent years, the social networks analysis gains great deal of attention. Social networks have various applications in different areas namely predicting disease epidemic, search engines and viral advertisements. A key property of social networks is that interpersonal relationships can influence the decisions that they make. Finding the most influential nodes is important in social networks b...
متن کاملThe Role of Online Social Networks in Users' Everyday-Life Information Seeking
Background and Aim: Considering the increasing number of users who interact with online social networks, it can be inferred that these networks have become an essential part of users' lives and play different roles in their everyday life. Therefore, the present study aims to explore the role of these networks in users' everyday-life information seeking. Method: This research is an applied resea...
متن کاملNATIONAL UNIVERSITY OF SINGAPORE School of Computing PH.D DEFENCE - PUBLIC SEMINAR
The prevalence of online social media such as Facebook, Twitter, LinkedIn and YouTube has attracted considerable research in social influence analysis with applications in viral marketing, online advertising, recommender systems, information diffusion, and experts finding. Social influence occurs when one?s emotions, opinions, or behaviors are affected by others. Most of the works on social inf...
متن کاملThe Influence of Location on Nodes’ Centrality in Location-Based Social Networks
Nowadays, due to the widespread use of social networks, they can be used as a convenient, low-cost, and affordable tool for disseminating all kinds of information and data among the massive users of these networks. Issues such as marketing for new products, informing the public in critical situations, and disseminating medical and technological innovations are topics that have been considered b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 355-356 شماره
صفحات -
تاریخ انتشار 2016